Sabtu, 05 Mei 2012

Materi Fisiologi Tumbuhan - Hormon pada Tumbuhan

| Sabtu, 05 Mei 2012 | 0 komentar

Konsep Dasar Hormon Pada Tumbuhan
            Pertumbuhan, perkembangan, dan pergerakan tumbuhan dikendalikan beberapa golongan zat yang secara umum dikenal sebagai hormon tumbuhan atau fitohormon. Penggunaan istilah “hormon” sendiri menggunakan analogi fungsi hormon pada hewan; dan, sebagaimana pada hewan, hormon juga dihasilkan dalam jumlah yang sangat sedikit di dalam sel. Beberapa ahli berkeberatan dengan istilah ini karena fungsi beberapa hormon tertentu tumbuhan (hormon endogen, dihasilkan sendiri oleh individu yang bersangkutan) dapat diganti dengan pemberian zat-zat tertentu dari luar, misalnya dengan penyemprotan (hormon eksogen, diberikan dari luar sistem individu). Mereka lebih suka menggunakan istilah zat pengatur tumbuh (bahasa Inggris plant growth regulator).

            Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.
            Hormon tumbuhan (phytohormones) secara fisiologi adalah penyampai pesan antar sel yang dibutuhkan untuk mengontrol seluruh daur hidup tumbuhan, diantaranya perkecambahan, perakaran, pertumbuhan, pembungaan dan pembuahan. Sebagai tambahan, hormon tumbuhan dihasilkan sebagai respon terhadap berbagai faktor lingkungan kelebihan nutrisi, kondisi kekeringan, cahaya, suhu dan stress baik secara kimia maupun fisik. Oleh karena itu ketersediaan hormon sangat dipengaruhi oleh musim dan lingkungan.
             Terdapatnya atau peran Zat pengatur tumbuh di tumbuhan pertama kali dikemukan oleh Charles Darwin dalam bukunya “The Power of movement in plants.” Beliau melakukan percobaan dengan rumput Canari (Phalaris canariensis) dengan memberinya sinar dari samping dan ternyata terjadi pembengkokan ke arah datangnya sinar . Bagian yang tidak mendapat sinar terjadi pertumbuhan yang lebih cepat daripada yang mendapat sinar sehingga terjadi pembengkokkan. Tetapi jika ujung kecambah dari rumput Canari dipotong akan tidak terjadi pembengkokan. Sehingga dianalisa bahwa jika ujung kecambah mendapat cahaya dari samping akan menyebabkan terjadi pemindahan “pengaruh atau sesuatu zat” dari atas ke bawah yang menyebabkan terjadinya pembengkokkan.
            Boysen-jemsen (1913) melakukan penelitian dengan koleoptil Avena (kecambah dari biji rumput-rumputan) menyatakan “pemindahan pengaruh adalah pemindahan zat alami yang dihasilkan dalam koleoptil Avena. Paal (1919) menguatkan pendapat dengan menyatakan bahwa “ujung batang adalah merupakan pusat pertumbuhan.
            Pemahaman terhadap fitohormon pada masa kini telah membantu peningkatan hasil pertanian dengan ditemukannya berbagai macam zat sintetis yang memiliki pengaruh yang sama dengan fitohormon alami. Aplikasi zat pengatur tumbuh dalam pertanian modern mencakup pengamanan hasil (seperti penggunaan cycocel untuk meningkatkan ketahanan tanaman terhadap lingkungan yang kurang mendukung), memperbesar ukuran dan meningkatkan kualitas produk (misalnya dalam teknologi semangka tanpa biji), atau menyeragamkan waktu berbunga (misalnya dalam aplikasi etilena untuk penyeragaman pembungaan tanaman buah musiman), untuk menyebut beberapa contohnya.

            Sejauh ini dikenal sejumlah golongan zat yang dianggap sebagai fitohormon, yaitu :
  • Auksin
  • Sitokinin
  • Giberelin atau asam giberelat (GA)
  • Etilena
  • Asam absisat (ABA)
  • Asam jasmonat
  • Steroid (brasinosteroid)
  • Salisilat
  • Poliamina.
a. Auksin adalah senyawa asam indol asetat (IAA) yang dihasilkan di ujung meristem apikal (ujung akar dan batang). F.W. Went (1928) pertama kali menemukan auksin pada ujung koleoptil kecambah gandum Avena sativa.
    1. membantu perkecambahan
2.      dominasi apikal
           
                        Auxin merupakan salah satu hormon tanaman yang dapat meregulasi banyak proses fisiologi, seperti pertumbuhan, pembelahan dan diferensiasi sel serta sintesa protein (Darnell, dkk., 1986).
                        Auxin diproduksi dalam jaringan meristimatik yang aktif (yaitu tunas , daun muda dan buah) (Gardner, dkk., 1991).  Kemudian auxin menyebar luas dalam seluruh tubuh tanaman, penyebarluasannya dengan arah dari atas ke bawah hingga titik tumbuh akar, melalui jaringan pembuluh tapis (floom) atau jaringan parenkhim (Rismunandar, 1988).
            Salisbury dan Ross (1995) menambahkan hormon yang pertama kali ditemukan adalah auksin.   Auksin endogen yaitu IAA (Indol Acetic Acid) ditemukan  pada tahun 1930-an bahkan saat itu hormon mula-mula dimurnikan dari air seni.  Karena semakin banyak hormon ditemukan maka efek serta konsentrasi endogennya dikaji.  Hormon pada tanaman jelas mempunyai ciri : setiap hormon mempengaruhi respon pada bagian tumbuhan, respon itu bergantung pada species, bagian tumbuhan, fase perkembangan, konsentrasi hormon, interaksi antar hormon, yang diketahui dan berbagai faktor lingkungan yaitu cahaya, suhu, kelembaban, dan lainnya.
     Istilah auksin pertama kali digunakan oleh Frist Went seorang mahasiswa PascaSarjana di negeri Belanda pada tahun 1926 yang kini diketahui sebagai asam indol-3 asetat atau IAA (Salisbury dan Ross  1995).   Senyawa ini terdapat cukup banyak di ujung koleoptil tanaman oat ke arah cahaya.   Dua mekanisme sintesis IAA yaitu pelepasan gugus amino dan gugus karboksil akhir dari rantai triphtofan.  Enzim yang paling aktif diperlukan untuk mengubah tripthofan menjadi IAA terdapat di jaringan muda seperti meristem tajuk, daun serta buah yang sedang tumbuh.  Semua jaringan ini kandungan IAA paling tinggi  karena disintesis di daerah tersebut.
         IAA terdapat di akar pada konsentrasi yang hampir sama dengan di bagian tumbuhan lainnya (Salisbury dan Ross  1995).   IAA dapat memacu pemanjangan akar pada konsentrasi yang sangat rendah.  IAA  adalah auksin endogen atau auksin yang terdapat dalam tanaman.  IAA berperan dalam aspek pertumbuhan dan perkembangan tanaman yaitu pembesaran sel yaitu koleoptil atau batang penghambatan mata tunas samping, pada konsentrasi tinggi menghambat pertumbuhan mata tunas untuk menjadi tunas absisi (pengguguran) daun aktivitas dari kambium dirangsang oleh IAA pertumbuhan akar  pada konsentrasi tinggi dapat menghambat perbesaran sel-sel akar.
       Penelitian IAA oleh Gregorio et al (1995) pada embrio, endosperma, dan integumen benih Sechium edule (labu Siam) pada umur 23, 27, 33, dan 37 hari setelah anthesis adalah sebagai berikut: 1) jumlah IAA pada embrio pada umur tersebut berturut-turut 1.67%, 2.08%, 3.40 % dan 3.29 %, 2) Jumlah IAA pada endosperma berturut-turut 20.45%, 25.72%, 30,40%, dan 52.22% dari total IAA, dan 3) Jumlah IAA pada integumen adalah 8.44%, 9.32%, 8.76% dan 8.04%,  dan 4) Jumlah IAA total ( IAA terikat maupun IAA bebas).
Beberapa proses bekerjanya auxin pada tumbuhan adalah sebagai berikut :
·         Auxin turut serta dalam reaksi molekuler. Auxin bekerja sepertinya bekerjanya koenzim dalam pertumbuhan tanaman
·         Auxin mempengaruhi enzim. Auxin bekerja sebagai zat pelindung bagi enzim dari inaktivasi. Auxin mempengaruhi DNA sehingga aktif dalam sintesis protein.
·         Auxin mempengaruhi tekanan osmotic tumbuhan. Auxin akan menaikkan tekanan osmotic tumbuhan sehingga akan menaikkan. Proses penyerapan air oleh tumbuhan.
·         Auxin akan memperpanjang/mengembangkan ukuran sel. Penjelasan secara Secara sederhana adalah bahwa auxin akan melunakkan dinding sel sehingga terjadi kenaikkan penyerapan air oleh sel yang akan berakibat sel mengembang.
·         Auxin menaikkan penyerapan H20.
            Beberapa fungsi auxin pada tumbuhan sebagai berikut :
·         Perkecambahan biji.
Auxin akan mematahkan dormansi biji (biji tidak mau berkecambah) dan akan merangsang proses perkecambahan biji. Perendaman biji/benih dengan Auxin juga akan membantu menaikkan kuantitas hasil panen.
·         Pembentukkan akar.
Auxin akan memacu proses terbentuknya akar serta pertumbuhan akar dengan lebih baik
·         Pembungaan dan pembuahan.
Auxin akan merangsang dan mempertinggi prosentase timbulnya bunga dan buah.
·         Mendorong Partenokarpi.
Parthenokarpi adalah suatu kondisi dimana tanaman berbuah tanpa fertilisasi atau penyerbukan .
·         Mengurangi gugurnya buah sebelum waktunya.
·         Mematahkan dominansi pucuk / apikal, yaitu suatu kondisi dimana pucuk tanaman atau akar tidak mau berkembang.
b. Giberelin adalah senyawa ini dihasilkan oleh jamur Giberella fujikuroi atau Fusarium    moniliformae, ditemukan oleh F. Kurusawa. Fungsi giberelin :
  1. pemanjangan tumbuhan
  2. berperan dalam partenokarpi
            Giberelin bekerja pada gen dengan menyebabkan aktivasi gen-gen tertentu. Gen-gen yang diaktifkan akan membentuk enzim-enzim baru yang menyebabkan terjadinya perubahan morphogenetik (penampilan/kenampakan tanaman).
      Giberelin sering disingkat dengan GA merupakan diterpenoid yang menempatkannya dalam keluarga kimia yang sama dengan klorofil dan karotein.  Bagian dasar kimia GA adalah kerangka giban dan kelompok karboksil bebas.  Macam-macam bentuk GA dibedakan oleh penggantian kelompok hidroksil, metil atau etil pada kerangka giban dan karena adanya cincin laktona yang dihasilkan oleh kondensasi karbon 20 ke karbon 19 dalam struktur giban (Gardner, dkk., 1991).  Dijelaskan lebih lanjut bahwa adanya cincin laktona seperti GA3, GA4 dan GA9 menyebabkan aktivitas biologis yang lebih besar dari pada analog serupa yang tidak memiliki cincin laktona seperti GA12 dan GA13.
                  Semua organ tanaman mengandung berbagai GA, dengan sumber terkaya sekaligus sebagai tempat biosintesisnya yaitu di dalam buah dan biji yang belum masak, tunas, daun dan akar (Rismunandar, 1988).  Biosintesis GA melibatkan 3 metabolit kimia, yaitu asam mevalonat yang bertindak sebagai pelopor untuk pembentukan isoprena, yaitu bagian dasar dalam karbon-19 dan karbon 20 kerangka giban, kaurena terbentuk dari isoprena, GA terbentuk dari kaurena  (Leopold dan Kriedemann, 1975 dalam Gardner, dkk., 1991).
                  GA diisolasi pada tahun 1926 oleh Karosawa dari jenis jamur Gibberella fujikuroi atau Fusarium heterosporum yang  hidup sebagai parasit pada tanaman padi.  Jamur ini dapat menyebabkan penyakit bakanae (penyakit kecambah tolol) pada padi, yaitu pertumbuhan batang berlebihan tetapi padi tidak mau berbuah.  Dari hasil pengamatan tersebut ternyata jamur memproduksi suatu zat yang dapat meningkatkan pertumbuhan , akhirnya zat aktif tersebut diberi nama giberilen atau disingkat GA (Wilkins, 1989).
                 
                  Sejak tahun 1950 orang sudah menaruh harapan besar terhadap GA terutama untuk meningkatkan produksi tanaman budidaya.  GA sintetis yang biasanya tersedia secara komersial adalah GA3, GA7 dan GA13 (Heddy, 1986).
                        Beberapa fungsi giberelin pada tumbuhan sebagai berikut :
·         Mematahkan dormansi atau hambatan pertumbuhan tanaman sehingga tanaman dapat tumbuh normal (tidak kerdil) dengan cara mempercepat proses pembelahan sel..
·         Meningkatkan pembungaan.
·         Memacu proses perkecambahan biji. Salah satu efek giberelin adalah mendorong terjadinya sintesis enzim dalam biji seperti amilase, protease dan lipase dimana enzim tersebut akan merombak dinding sel endosperm biji dan menghidrolisis pati dan protein yang akan memberikan energi bagi perkembangan embrio diantaranya adalah radikula yang akan mendobrak endosperm, kulit biji atau kulit buah yang membatasi pertumbuhan/perkecambahan biji sehingga biji berkecambah
·         Berperan pada pemanjangan sel.
Peran giberelin pada pemanjangan sel melalui :
Peningkatan kadar auxin :giberelin akan memacu pembentukan enzim yang melunakkan dinding sel terutama enzim proteolitik yang akan melepaskan amino triptofan (prekusor/pembentuk auksin) sehingga kadar auxin meningkat.Giberelin merangsang pembentukkan polihidroksi asam sinamat yaitu senyawa yang menghambat kerja dari enzim IAA oksidase dimana enzim ini merupakan enzim perusak Auxin.
Giberelin merangsang terbentuknya enzim a-amilase dimana enzim ini akanmenghidrolisis pati sehingga kadar gula dalam sel akan naik yang akan menyebabkan air lebih banyak lgi masuk ke sel sehingga sel memanjang.
·         Berperan pada proses partenokarpi. pada beberapa kasus pembentukan buah dapat terjadi tanpa adanya fertilisasi atau pembuahan, proses ini dinamai partenokarpi. .
c. Sitokinin
                 
                  Pertama kali ditemukan pada tembakau. Hormon ini merangsang pembelahan sel.Sitokinin sering juga dengan kinin, merupakan nama generik untuk substansi pertumbuhan yang khususnya merangsang pembelahan sel (sitokinesis) (Gardner, dkk., 1991).  Selanjutnya dijelaskan kinin disintesis dalam akar muda, biji dan buah yang belum masak dan jaringan pemberi makan (misalnya endosperm cair).  Buah jagung, pisang, apel, air kelapa muda dan santan kelapa yang belum tua merupakan sumber kinin yang kaya.
                  Kinin terbentuk dengan cara fiksasi suatu rantai beratom C – 5, ke suatu molekul adenin.  Rantai beratom C – 5 dianggap berasal dari isoprena.  Basa purin merupakan penyusun kimia yang umum pada kinin alami maupun kinin sintetik  (Millers, 1955 dalam Wilkins, 1989).  Biosintesis sitokinin dengan bahan dasar mevalonic acid.
                  Sebenarnya sudah sejak tahun 1892 ahli fisologi I. Wiesner, menyatakan bahwa aktivitas pembelahan sel membutuhkan zat yang spesifik dan adanya keseimbangan antara faktor-faktor endogenous.  Secara pasti baru tahun 1955 sitokinin ditemukan oleh C.O. Miller, Falke Skoog, M.H. Von Slastea dan F.M. Strong dinyatakan sebagai isolasi zat yang disebut kinetin dari DNA yang diautoklap,  sangat  aktif  sebagai  promotor    mitosis  dan  pembelahan  sel  kalus (Moree, 1979).  Selanjutnya dijelaskan  bahwa kata sitokinin berasal dari pengertian cytokinesis yang berarti pembelahan sel.  Sitokinin alami ditemukan oleh D.S. Lethan dan C.O. Miller tahun 1963 diisolasi dalam bentuk kristal dari biji jagung yang belum matang disebut zeatinSitokini alami terjadi dari derivat isopentenyl adenine.
                  Sitokinin sintetik yang paling umum dimanfaatkan di bidang pertanian seperti BA, kinetin dan PBA.  Kinin menimbulkan kisaran respons yang luas, tetapi kinin bertindak secara sinergis dengan auxin dan juga hormon lain.
      Beberapa fungsi Sitokinin pada tumbuhan sebagai berikut :
·         Pembelahan sel dan pembesaran sel. Sitokinin memegang peranan penting dalam  proses pembelahan dan pembesaran sel, sehingga akan memacu kecepatan pertumbuhan tanaman.
·         Pematahan Dormansi biji. Sitokinin berfungsi untuk mematahkan dormansi (tidak mau berkecambah) pada biji-bijian tanaman.
·         Pembentukkan tunas-tunas baru,turut dipacu dengan penggunaan Sitokinin.
·         Penundaan penuaan atau kerusakan  pada hasil panenan sehingga lebih awet.
·         Menaikkan tingkat mobilitas unsur-unsur dalam tanaman.
·         Sintesis pembentukkan protein akan meningkat dengan pemberian Sitokinin
by. Fitriaji NH
d. Gas etilen
                  Banyak ditemukan pada buah yang sudah tua.Ethylene merupakan senyawa unik dan hanya dijumpai dalam bentuk gas. senyawa ini memaksa pematangan buah, menyebabkan daun tanggal dan  merangsang penuaan. Tanaman sering meningkatkan produksi ethylene sebagai respon terhadap stress dan sebelum mati. Konsentrasi Ethylene fluktuasi terhadap musim untuk mengatur kapan waktu menumbuhkan daun dan kapan mematangkan buah.
e. Asam absiat
                  Asam Abscisat (ABA) adalah penghambat pertumbuhan merupakan lawan dari gibberellins: hormon ini memaksa dormansi, mencegah biji dari perkecambahan dan menyebabkan rontoknya daun, bunga dan buah. Secara alami tingginya konsentrasi asam abscisat ini dipicu oleh adanya stress oleh lingkungan misalnya kekeringan.
                   Semua jaringan tanaman terdapat hormon ABA yang dapat dipisahkan secara kromatografi Rf 0.9.   Senyawa tersebut merupakan inhibitor B –kompleks.  Senyawa ini mempengaruhi proses pertumbuhan, dormansi dan absisi.   Beberapa peneliti akhirnya menemukan senyawa yang sama yaitu asam absisat (ABA).   Peneliti tersebut yaitu Addicott et al dari California USA pada tahun 1967 pada tanaman kapas dan Rothwell serta Wain pada tahun 1964 pada tanaman lupin (Wattimena 1992).
                  Menurut Salisbury dan Ross (1995) zat pengatur tumbuhan yang diproduksi di dalam tanaman  disebut juga hormon tanaman.  Hormon tanaman yang dianggap sebagai hormon stress diproduksi dalam jumlah besar ketika tanaman mengalami berbagai keadaan rawan diantaranya yaitu ABA.  Keadaan rawan tersebut antara lain kurang air,  tanah bergaram, dan suhu dingin atau panas.  ABA membantu tanaman mengatasi dari keadaan rawan tersebut.
                  ABA adalah seskuiterpenoid berkarbon 15, yang disintesis sebagian di kloroplas dan plastid melalui lintasan asam mevalonat (Salisbury dan Ross 1995).   Reaksi awal sintesis ABA sama dengan reaksi sintesis isoprenoid seperti gibberelin sterol dan karotenoid.   Menurut Crellman (1989) biosintesis ABA pada sebagian besar tumbuhan terjadi secara  tak langsung melalui peruraian karotenoid tertentu (40 karbon) yang ada di plastid.  ABA pergerakannya dalam tumbuhan sama dengan pergerakan gibberelin yaitu dapat diangkut secara mudah melalui xilem floem dan juga sel-sel parenkim di luar berkas pembuluh.    
f. Florigen
g. Kalin
Hormon pertumbuhan organ, terdiri dari :
1.      Rhizokalin
2.      Kaulokali
3.      Filokalin
4.      Antokalin
h. Asam traumalin atau kambium luka
            Merangsang pembelahan sel di daerah luka sebagai mekanisme untuk menutupi luka

Mekanisme Sederhana Pengaruh Hormon/ Zat Pengatur Tumbuh (Zpt) Hormonik Terhadap Pertumbuhan Vegetatif Dan Generatif

            Tanaman secara alamiah tanaman sudah mengandung hormon pertumbuhan seperti Auksin, giberelin dan Sitokin yang dalam tulisan ini diistilahkan dengan hormon endogen. Kebanyakan hormon endogen di tanaman berada pada jaringan meristem yaitu jaringan yang aktif tumbuh seperti ujung-ujung tunas/tajuk dan akar. Tetapi karena pola budidaya yang intensif yang disertai pengelolaan tanah yang kurang tepat maka kandungan hormon endogen tersebut menjadi rendah/kurang bagi proses pertumbuhan vegetatif dan generatif tanaman. Akibatnya sering dijumpai pertumbuhan tanamaman lambat, kerontokan bunga/ buah, ukuran umbi/buah kecil yang merupakan sebagian tanda kekurangan hormon (selain kekurangan zat lainnya seperti unsur hara). Oleh karena itu penambahan hormon dari luar (hormon eksogen) seperti produk HORMONIK yang mengandung hormon Auksin , giberelin dan Sitokinin ORGANIK (Non sintetik/kimia) mutlak diperlukan untuk menghasilkan pertumbuhan vegetatif dan generatif tanaman yang optimal,
            Untuk mengetahui bagaimana mekanisme kerja HORMONIK (Auksin, giberelin dan Sitokinin) pada tanaman, berikut diuraikan secara global dan sederhana.
Pemberian Auksin eksogen (HORMONIK) akan meningkatkan permeabilitas dinding sel yang akan mempertinggi penyerapan unsur , diantaranya unsur N, Mg, Fe, Cu untuk membentuk chlorofil yang sangat diperlukan untuk mempertinggi fotosintesis. Dengan fotosintesis yang semakin meningkat akan dihasilkan hasil fotosintesis yang meningkat dan bersama dengan auxin akan bergerak ke akar untuk memacu pembentukan giberelin dan Sitokinin di akar yang akan membantu pembentukan dan perkembangan akar . Penambahan kandungan Auksin eksogen di akar akan meningkatkan tekanan turgor akar sehingga giberelin dan Sitokinin endogen di akar akan diangkut ke atas/ bagian tajuk tanaman.
            Dengan penambahan Sitokinin dan giberelin eksogen maka terjadi peningkatan kandungan Sitokinin dan giberelin ditanaman (tajuk) dan akan meningkatkan jumlah sel (oleh hormon Sitokinin) dan ukuran sel (oleh hormon giberelin) yang bersama-sama dengan hasil fotosintat yang meningkat di awal penanaman akan mempercepat proses pertumbuhan vegetatif tanaman (termasuk pembentukan tunas-tunas baru) selain juga mengatasi kekerdilan tanaman.
            Seiring dengan pertumbuhan vegetatif tanaman, hasil fotosentesis akan meningkat terus dan ditambah kandungan giberelin dan sitokinin eksogen akan meningkatkan perbandingan C/N yang menyebabkan peralihan dari masa vegetatif ke generatif dengan terbentuknya kuncup bunga/buah atau umbi. Pada saat terbentuk bunga atau buah, jika kandungan auksin rendah maka sel-sel antara tangkai bunga/buah dengan ranting/cabang akan berubah menjadi jaringan mati yaitu jaringan gabus sehingga bunga/buah mudah rontok. Dengan penambahan Auxin Eksogen akan menghambat perubahan sel-sel tersebut menjadi jaringan gabus sehingga kerontokkan dapat dicegah/dikurangi.
Di fase generatif ini penambahan Hormon Sitokinin dan giberelin eksogen akan meningkatkan kapasitas jaringan penyimpanan hasil fotosintesa yang dipanen (umbi, buah dll) yaitu sitokinin akan memperbanyak sel jaringan penyimpanan dan giberelin akan memperbesar sel jaringan penyimpanan sehingga mampu menerima hasil-hasil fotosintesa lebih banyak yang berakibat ukuran jaringan penyimpanan (buah) lebih besar (semangka, kentang, dll) atau bernas (padi, jagung dll).
            Penambahan Hormon Auxin, Sitokinin dan giberelin Eksogen akan berpengaruh
terhadap :
1.      Akar : akan menaikkan kapasitas penyerapan air dan unsur hara
2.      Daun : mempertinggi laju fotosintesis sehingga hasil fotosintesa lebih banyak
3.      Ditambah dengan penambahan unsur – unsur hara dari POC NASA dan atau POP SUPER NASA yang akan mencukupi kebutuhan tanaman secara jumlah dan jenis unsur hara. Sehingga semua faktor di atas akan membuat tanaman tercukupi kebutuhannya yang akan berpengaruh pada umur produktif tanaman (umur dimana tanaman masih dapat berproduksi dengan cukup baik) dapat diperpanjang baik untuk tanaman semusim atau tahunan.
Keterangan :
- Permeabilitas : Kemampuan dinding sel untuk dilewati suatu senyawa
(biasanya bentuknya cairan )
- C/N : Perbandingan antara Carbon dan Nitrogen dimana semakin
besar perbandingan C/N maka tanaman akan terpacu menuju ke pertumbuhan generatif tanaman

0 komentar:

:)) ;)) ;;) :D ;) :p :(( :) :( :X =(( :-o :-/ :-* :| 8-} :)] ~x( :-t b-( :-L x( =))

Poskan Komentar

 
© Copyright 2012. Makalah Cyber . All rights reserved | Makalah Cyber.blogspot.com is proudly powered by Blogger.com | Template by Makalah Cyber - Zoenk